Chapter 6: States of Matter: Gases, Liquids, and Solids

6.1 The Gaseous State

- **Ideal Gas Concept**
 - **Ideal gas** - a model of the way that particles of a gas behave at the microscopic level.
 - We can measure the following of a gas:
 - temperature,
 - volume,
 - pressure and
 - quantity (mass)
 - We can systematically change one of the properties and see the effect on each of the others.

- **Measurement of Gases**
 - The most important **Gas Laws** involve the relationship between
 - number of moles (n) of gas
 - volume (V)
 - temperature (T)
 - pressure (P)
 - **Pressure** - force per unit area.
 - Gas pressure is a result of force exerted by the collision of particles with the walls of the container.
 - **Barometer** - measures atmospheric pressure.
 - A commonly used unit of pressure is the atmosphere (atm).
 - 1 atm is equal to: 760 mmHg = 760 torr = 76 cmHg

- **Boyle’s Law** - volume of a gas is inversely proportional to pressure if the temperature and number of moles is held constant.

- **Charles’ Law** - volume of a gas varies directly with the absolute temperature (K) if pressure and number of moles of gas are constant.

- **Temperature-Pressure Relationship at Constant Volume** - The pressure of a gas is directly proportional to the Kelvin temperature if the volume is kept constant.

- **Combined Gas Law** - This law is used when a sample of gas undergoes change involving volume, pressure, and temperature simultaneously.

- **Avogadro’s Law** - equal volumes of an ideal gas contain the same number of moles if measured under the same conditions of temperature and pressure.
- **Molar Volume** - the volume occupied by 1 mol of any gas determined by Avogadro. At STP the molar volume of a gas is 22.4 L.
 - **STP** - Standard Temperature and Pressure
 - T = 273 K (or 0°C)
 - P = 1 atm
 - We will learn to calculate the volume later.

- **The Ideal Gas Law** - Combining Boyle’s Law, Charles’ Law, T-P Relationship Law and Avogadro’s Law gives the Ideal Gas Law.

- **Dalton’s Law of Partial Pressures** - a mixture of gases exerts a pressure that is the sum of the pressures that each gas would exert if it were present alone under the same conditions.
 - For example, the total pressure of our atmosphere is equal to the sum of the pressures of N\textsubscript{2} and O\textsubscript{2}.

- **Kinetic Molecular Theory of Gases**
 - 1. Gases are made up of small atoms or molecules that are in constant and random motion.
 - 2. The distance of separation is very large compared to the size of the atoms or molecules.
 - The gas is mostly empty space.
 - 3. All gas particles behave independently.
 - No attractive or repulsive forces exist between them.
 - 4. Gas particles collide with each other and with the walls of the container without losing energy.
 - The energy is transferred from one atom or molecule to another.
 - 5. The average kinetic energy of the atoms or molecules is proportional to absolute temperature.
 - K.E. = \(1/2mv^2\) so as temperature goes up, the speed of the particles goes up.
 - How does the Kinetic Molecular Theory of Gases explain the following statements?
 - Gases are easily compressible.
 - Gases will expand to fill any available volume.
 - Gases have low density.
 - Remember: pressure is a force per unit area resulting from collision of gas particles with the walls of the container. If pressure remains constant why does volume increase with temperature?
 - Gases behave most ideally at low pressure and high temperatures.

- **Ideal Gases Vs. Real Gases**
 - In reality there is no such thing as an ideal gas. Instead this is a useful model to explain gas behavior.
 - Non-polar gases behave more ideally than polar gases because attractive forces are present in polar gases.
6.2 The Liquid State

- Liquids are practically incompressible.
 - Enables brake fluid to work in your car
- **Viscosity** - a measure of a liquid's resistance to flow.
 - Flow occurs because the molecules can easily slide past each other.
 - Glycerol - example of a very viscous liquid.
 - Viscosity decreases with increased temperature.
- **Surface Tension** – a measure of the attractive forces exerted among molecules at the surface of a liquid.
- Surface molecules are surrounded and attracted by fewer liquid molecules than those below.
- Net attractive forces on surface molecules pull them downward.
 - Results in “beading”
- **Surfactant** - substance added which decreases the surface tension
 - example: soap
- Kinetic Theory - Liquid molecules are in continuous motion, with their *average* kinetic energy directly proportional to the Kelvin temperature.
- What happens when you put water in a sealed container?
- Both liquid water and water vapor will exist in the container. How does this happen below the boiling point?
- Once there are molecules in the vapor phase, they can be converted back to the liquid phase
- **Evaporation** - the process of conversion of liquid to gas, at a temperature too low to boil
- **Condensation** - conversion of the gas to the liquid state.
- When the rate of evaporation equals the rate of condensation, the system is at equilibrium.
- Vapor pressure of a liquid - the pressure exerted by the vapor at equilibrium
- **Boiling point** - the temperature at which the vapor pressure of the liquid becomes equal to the atmospheric pressure.
- **Normal boiling point** - temperature at which the vapor pressure of the liquid is equal to 1 atm.
- What happens when you go to a mountain where the atmospheric pressure is lower than 1 atm? The boiling point lowers.
- Boiling point is dependant on the inter-molecular forces
 - Polar molecules have higher b.p. than nonpolar molecules.
- **Van der Waals Forces** - are types of intermolecular forces.
- Consists of:
 - Dipole-dipole interactions (section 4.5)
 - London forces
- London Forces:
 - Exist between all molecules
 - Is the only attractive force between nonpolar atoms or molecules
Electrons are in constant motion. This can create temporary dipoles among atoms. These dipoles can interact to cause attraction.

Hydrogen bonding:
- not considered a Van der Waals Force
- is a special type of dipole-dipole attraction
- is a very strong intermolecular attraction causing higher than expected b.p. and m.p.

Requirement for hydrogen bonding:
- molecules have H directly bonded to O, N or F

6.3 The Solid State

- Particles highly organized and well defined fashion
- Fixed shape and volume
- Properties of Solids:
 - incompressible
 - m.p. depends on strength of attractive force between particles
 - **Crystalline solid** - regular repeating structure
 - **Amorphous solid** - no organized structure.

Types of Crystalline Solids
- 1. Ionic Solids
 - held together by electrostatic forces
 - high m.p. and b.p.
 - hard and brittle
 - if dissolves in water, electrolytes
 - NaCl
- 2. Covalent Solid
 - Held together entirely by covalent bonds
 - high m.p. and b.p.
 - extremely hard
 - Diamond
- 3. Molecular solids
 - molecules are held together with intermolecular forces
 - often soft
 - low m.p.
 - often volatile
 - ice
- 4. Metallic solids
 - metal atoms held together with metal bonds
 - metal bonds
 - overlap of orbitals of metal atoms
 - overlap causes regions of high electron density where electrons are extremely mobile - conducts electricity